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J .  Phys. A :  Gen. Phys.. Vol. 5 ,  January 1972. Printed in Great Britain 

Optical mixing in a magnetized plasma 

T J M BOYD and J G TURNER 
Department of Applied Mathematics, University of Wales, Bangor. U K  

MS received 10 August 1970, in revised form 1 July 1971 

Abstract. The generation of enhanced electrostatic oscillations in a plasma in a spatially 
homogeneous magnetic field by two high frequency electromagnetic Haves uith frequencies 
LL), , w2 is examined. These enhanced fluctuations may possibly be detected in a light scatter- 
ing experiment. Starting from a kinetic equation. an expression is found for the stimulated 
scattering cross section for modes propagating orthogonally to the magnetic field. Reson- 
ances at the upper hybrid frequency and harmonics of the cyclotron frequency mean that, 
if (oi - w 2  is tuned to one of these frequencies, significant enhancement may be expected. 
The stimulated and thermal scattering cross sections are then compared in the long wave- 
length limit. It is found that the scattering intensity due to the stimulated cyclotron harmonic 
modes falls off more rapidly with increasing harmonic number than the scattering intensit) 
in the thermal case. Such a scattering experiment might also be of use as a diagnostic tool 
in magnetic field measurements in hot laboratory plasmas. 

1. Introduction 

The scattering of electromagnetic radiation by matter provides a powerful technique 
for studying the internal structure and dynamics of physical systems and has had wide 
application in plasma physics since the development of giant-pulse lasers. These 
experiments are valuable not only in a diagnostic sense (measuring, for example, electron 
temperature and density) but in providing sensitive tests of plasma theory. The state of 
laser light scattering by laboratory plasmas has been reviewed by Evans and Katzenstein 
(1969). The most significant development since this review has been an observation by 
Evans et al(1970) of magnetic modulation in the spectrum of light scattered by a plasma 
in a strong magnetic field. This work extends the diagnostic value of light scattering 
experiments since detection of the fine structure induced by the field on the spectrum 
provides a means of measuring magnetic fields in plasmas. 

When collective effects in plasmas are important the spectrum of scattered light 
contains resonances which correspond to the basic modes of oscillation. For example, 
in an isotropic plasma a feature appears due to light scattered by eleetron plasma 
oscillations with frequency up. Although this has been observed, methods have been 
sought for enhancing the scattered light by generating a suprathermal level of electron 
plasma waves without at the same time driving the plasma unstable. In one approach 
two transverse waves with frequencies wl, w2 are switched on and the frequencies tuned 
so that w1 -a2 = w 3  v up. This stimulation procedure is familiar from other branches 
of physics; in the language of nonlinear optics, Stokes and anti-Stokes scattering modes 
are associated with each of the pump waves w1 and w2.  A Stokes mode driven for one 
of these having a frequency w1 - wp, will on resonance enhance the anti-Stokes scattering 
of the second pump wave. In the plasma case the geometry must be such that the 
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wavevectors of the transverse waves k ,  and k ,  satisfy Ik, -k21AD .c 1, where AD is the 
plasma Debye length, to avoid Landau damping of the longitudinal plasma waves. 

Experiments have been designed to detect scattering from enhanced plasma oscilla- 
tions. To date these have been successful at microwave frequencies ; Stern and Tzoar 
(1965) have observed enhanced scattering by using the Tonks-Dattner resonances to 
excite a suprathermal level of oscillations?. In a magnetized plasma a stimulated scatter- 
ing experiment may be valuable from a diagnostic point of view. The calculation presen- 
ted here examines the use of electromagnetic waves to enhance electrostatic oscillations in 
a plasma in a spatially homogeneous magnetic field. The perturbation scheme is outlined 
in 0 2 and the second order perturbation in plasma density due to nonlinear interactions 
between the waves is calculated in 9 3. Knowing the Fourier transform of the electron 
density allows us to compute the spectral density of electron density fluctuations S(k, o) 
which in turn determines the scattering cross section. The results are discussed in terms 
of a scattering experiment in 0 4. 

2. First order calculation 

Consider a two component plasma consisting of electrons and one species of ion ; the 
ions will be treated as stationary, providing a neutralizing uniform background of 
positive charge. The electron dynamics will be described by the kinetic equation 

= - v(f(r, U, t )  - fo(4) (1) 

in which collisions have been represented phenomenologically by the right hand side, 
fo(u) being an equilibrium distribution function and v a collision frequency. The electric 
field E(r, t )  consists of a switched-on field 

E""'(r,t) = E ,  C O S ( C O , ~ - ~ ,  . r ) + E ,  cos(o,t-k, . Y + x )  

corresponding to two incident waves of frequencies o1 , o, and wavevectors k , ,  k, 
with a phase difference x, together with the selfconsistent electric field in the plasma ; 
B(r, t )  represents the magnetic field. In addition we have Poisson's equation 

V . (E@, t )  - fPxt(r, t ) )  = 471en, 1 - f(r, U, t )  du ( 2 )  i s  1 
in which no represents the equilibrium particle density in the plasma. 

one can use the perturbation scheme 
If one assumes that the applied electric field does not seriously disturb the plasma 

f = &(U) + cf'''(r, U, t )  + c2f'2)(r, U, t )  + . . . 
E = cE<l)(r, t)+ E2ki'(')(r, t)+ . . . 
E = Eo + tB(')(r, t )  + c2B(''(r, t )  + . . . 

where E denotes a perturbation expansion parameter. Here the first order electric field 
ki'("(r, t )  consists of the applied field Pxt(r, t )  together with the first order selfconsistent 
field of the plasma. 
t A light scattering experiment has now been successful (cf Nodwell R A ,  Stansfield B Land Meyer J 1971 Phys. 
Rev. Lett. 26 1219-21). 
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To zero order, the kinetic equation then becomes (Stix 1962) 

Zfo 
(U x Bo) .  - = 0 

? U  

which, on transforming to cylindrical polar coordinates 

U = (ul cos 4, cl sin 4. c ) 13) 

where ul, L' , denote velocity components perpendicular and parallel to Bo,  implies 

f o ( 4  = f O ( t . 1 -  1 ) .  

To first order one finds 

with the corresponding Poisson equation 

V . (p') - Ex') = - 4nen0 1 f") dv. ( 6 )  

Equation (5) may be solved for the first order perturbation to the electron distribution 
function by integrating along the unperturbed electron orbits. Observe that the left hand 
side of (5) denotes the rate of change off"' as seen by an observer moving on the electron 
trajectory defined by v = v(t). that is 

df") Z f ( 1 )  dV ;f") da +, .-+7 - 
dt  S t  CY dt cu ' dt 
- - -  - 

The motion of an electron in a uniform magnetic field Bo to zero order is governed by 
the equations 

Thus the rate of change of fcl ' (r ,  U ,  t) along the unperturbed electron trajectory is 

so that (5) becomes 

Integrating along the zero order electron trajectory from t' = - x up to f '  = t gives 

The electron trajectory ~ ' ( t ' )  ending at V' = I' at t' = t is given by 
c 

.Y' = A[sin{R(t'-t)+4}-sin 4 ] + x  
51 

y' = --[cos{R(t '-f)+~j-cos rl 41+J 
n 

z' = q ( t ' - r ) + z  
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with Q = eB,/mc, the electron cyclotron frequency. From dr'ldt' = U' one has 

U; = I J ~  cos{Q(t'-t)+$} 

U; = uI sin{Q(t' - t) + $} 

U: = U I l .  (10) 

From (10) it is clear that (U;)' = (U:)? +(ob)' = U: so that U: and U,, are constants of the 
motion. Hence, from (4), fo(u,, U,,), af0/au, and 8fo/dull have the same form in primed 
and unprimed coordinates. Comparing (3) and (10) shows that 

4' = Q(t' - t )  + $ 

and hence 

B 2 2  
- = (icos(~-Q~)+jsin($-Qt)),+8- 
BU' 001 avll 

where T := t - t'. 
Fourier transforming equations (8) and (6) gives 

2f&'(T)) d t  exp{i(o + iv)t + ik . ( ~ ' ( 7 )  - r ) }P' ) (k ,  0) . 
(7) 

(1 1) 

(12) ik . (Eext(k, w )  - f?')(k, CO)) = 4zen0 

Substitutingf") from (1 1) in (12), Poisson's equation gives 

where v has been chosen to be velocity independent, and ~ ( k ,  o) is the dielectric function 
of the plasma given by 

E ( ~ , w )  = 1-+ drduexp{i(co+iv)z+ik.(r'(T)-r)}k.-. a f O ( 4  
k s s aut 

Writing k = ( k ,  cos a, k, sin a, 0) and noting that 

exp{ i k . (~'(t) - Y)} = exp(ia sin($ - a  - Qt) - ia sin($ -a))  
X 

= exp( - ia sin($ -a))  

where J, is a Bessel function of the first kind or order n, and a = k,u,/Q, one has from (12) 

J,(a) exp{ in(4 - a  - at)} 
n=--tc 
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where w has been written for w + i v  in the denominators and dielectric function in (13). 
The dielectric function c(kL,  w)  may be represented in the form 

where ,iD = ( k T / 4 ~ r n , e ~ ) ” ~  is the Debye length in a plasma of density no and temperature 
Tand I,(A) is the modified Bessel function of the first kind, with argument = k:kT/R2m. 
The transform of the switched-on field is given by 

E””‘(k,w) = $!q6(w+w1)6(k+k, )  

+$E,{d(o+w,)b(k+k, )  e ’ z + 6 ( w - w , ) ( k - k 2 )  e- ’ / ;  (15) 

and it has been assumed that the electron temperatures across and along the magnetic 
field are the same, so that 

3. Second order calculation 

Extending the perturbation calculation to second order gives 

- V  . Z2)(v, t )  = V 2 @ 2 ) ( ~ ,  t) = 47ten, f ( 2 ’ ( r ,  U, r )  du (17) i 
and so the second order number density 

By integrating along unperturbed orbits as in the first order calculation, one finds on 
Fourier transforming 

e 
f ( 2 ’ ( k ,  V ,  U )  = - exp{ - i(k . Y -ut)) j / dw’ dk’ dt’ exp{i(k . r’ -or’); 

m Sl , 
1 x j l ” ( k - k . . w w ’ ) + -  x { ( k  - k’) x E“’(k - k‘,  0 -U ’ ) }  

U’ 

w--0‘ 

df“’(k’, U’, 0’) 
ad 

ie %(U’) + ;@”(k. CO) dt’ exp{ ik(r’ - v )  + iw(t - t ’ ) }k  . __ 
x ?U’ 
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Denoting the first term on the right hand side of (19) by (e/m)H, the Fourier transform 
of Poisson’s equation gives on substituting for f ” )  from (19) 

k2@’’(k, w)  = w i  j H dv 

where 

so that 
p = wz+ asin(&-r-Rr)-asin(+-x) 

with e(k,. (11) given by (13). 
Thus, using (18) 

The details of the calculation are shown in the Appendix. 
The expression for d 2 ) ( k ,  w )  is then 

noe2z J” j J” dw’ dk‘ exp{ is(a + p + e)} 
d 2 ) ( k ,  w )  = - vldv, ~ c JS4 2m2 E(k1, LO) ,= - ~ O’(O -sR) 

x [ { ($ )>o[El (k ’ ,w’ )E l (k -k ’ ,w-w‘ )exp{  -2i(p+8)}JS-,(b) 

+ ET(k‘, w’)ET(k-k‘, w - w ‘ )  exp{2i(/?+8)}JS+,(b)] 

J,(b) Re(E,(k‘, w‘)E;(k - k’, w - U’)) 

o’)E,(k - k’, o - to‘) 
o - CO’ dU, 

x [exp{ - i(& + p + 8)}J,- ,(b) + exp{i(ji+ p+ e)}J,+ ,@)I 

+ 2if,(v,)-EE,(k‘, w’)E,(k - k’, w - o’)J,(b) sin@ - sr’) 

+- [E ,@’ ,  w’)exp{ -i(/?+O)}Js-l(b) 

k; 
R 

df0 
dv, 

+ ETW, 0’) exp{i(P+ Q)}J,+ ,(b)l 

x Re(e”E,(k - k’, w - 0’)) . (22) 11 
On setting E, = 0 and (x = p = 8 = 0 so that E ,  = 0, the one dimensional result for 
the second order perturbation becomes 

c 2RQ(s) - wR(s) c noe2ElE2 d 2 ) ( k ,  U )  = 
4mZu,Zw1w2~(k ,w) ,= - ,  w-sR 

x 6(w & Aw)6(k AA) 
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where 

R(s) = J dx exp( -x2)J,(px)(4x3J~(px)+2xJ,(px)j 
0 

and Aw = w2 - w ,  , Ak = k2  - k ,  . This result agrees with that of Sauer and Wallis (1966). 
In the limit T --t 0 

#' 3noe2E, E2k2X:,6(w f Aw)d(k i Ak) 
m2wlwzto(k ,  w)(w2 - Q 2 )  

where c,,(k, w )  = 1 -w i / (w2  -Q2) ;  this agrees with the cold plasma calculation of Weyl 
(1970) apart from the factor 3 .  

The electrostatic modes driven by the applied fields E ,  and E ,  may be observable 
in a light scattering experiment, as suggested by Kroll et a1 (1964) in the isotropic case. 
One can then define a differential scattering cross section per unit frequency interval 
per unit solid angle per electron 

r =&, U) = 

dza 1 
dwdZ 471 

= -S(k, w)(l +cosz O)r: (24) 

where 0 is the scattering angle and re = e2/mcz is the classical electron radius. S(k, w )  
is the scattering form factor defined by 

(21n"'(k, 01') 
S(k,w) = lim 

v , r + r  n,VT 

(Evans and Katzenstein 1969), where V is the plasma volume, no the electron density 
and the brackets denote an ensemble average. Using (23) one finds for the form factor 

2QQ(s) (w - sQ) - { (w - sR)w + v 2  )R(s)  
(w - sQ)2 + v 2  I S(k, W )  = 

where w is now real, 13 = o + i v  and /o-sR/  > 11. The cross section integrated over 
frequency may then be compared with the thermal cross sections per unit solid angle 
for scattering at both the upper-hybrid resonance wUH = (wi+Q2)1'z and the nth 
Bernstein mode ; these are 

(27h) 

where i. << 1 (Salpeter 1961) and the angular factor has been omitted. 
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4. Discussion 

The warm plasma theory developed in $ 3  provides a scattering form factor S(k,w) 
which depends on the applied electric fields, the plasma dielectric function ~ ( k ,  w) and a 
complicated amplitude expressed as a sum over a harmonic number s. The one dimen- 
sional result (23) will serve to illustrate the main features of the general expression. 

Kroll et a1 (1964) showed that oscillations in unmagnetized plasmas driven by 
coupled radiation fields can lead to scattering cross sections greatly enhanced over 
thermal levels. Subsequently Bloembergen and others pointed out that the enhancement 
factors (z were more apparent than real on account of the fact that the cross 
section per unit solid angle was estimated whereas for diffraction limited beams the 
available solid angle is very small. Nonetheless the facts that a real enhancement has 
been demonstrated by Stern and Tzoar at microwave frequencies and that Evans and 
Carolan (1970) have reported light scattering by magnetized thermal plasmas make it 
timely to consider a stimulated laser scattering experiment for a plasma in a magnetic 
field, not least in view of its promise as far as magnetic field diagnostics are concerned. 

First one may compute the enhancement factor for a typical laboratory plasma. 
The cross section for stimulated scattering is obtained by integrating (24) over frequency, 
that is, replacing w by Am. When Aw 'v o,,,,,,,~ which satisfies the dispersion relation, 
significant enhancement could be expected. For a warm plasma in which electrostatic 
waves propagate at right angles to the magnetic field, the roots of the dispersion relation 
occur at the upper hybrid frequency and close to the cyclotron harmonics for 2 << 1. 
At the upper hybrid resonance 

and 

At the cyclotron harmonic w 'v rR keeping only the rth term in the dispersion relation 
gives 

Note that for relativistic corrections to be negligible we require w - rR 
Then 

R6, >> rRc:/c2. 

[da(rR)/dZ],tim noe4(ElE2)22rr! 
4 4 2 2 r Z j . r  cz 

[da(rR)/dZlth Olw2 

(28 )  
s f r  

Noting that Q(s) 'v 2s/2s+1(s-1)!, s 2 1 and R(s) s E,"-'/2s(s-2)!, s 2 2 for 2 << 1 
the dominant contribution comes from the first term in the bracket so that 

[dc~(rR)/dC],,~, r3(r- l )no e2E1E2R ' 
[da(rR)/dZ],, 2'+'(r-2)! m 2 v ~ 0 1 w 2 v  

'v ( ) i r - ' ? 6 ( k + A k )  
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since r 2. ( v R / ~ 3 2 ~ ( r -  l ) ! i l - r .  In practice the incident beams have a finite spread in 
wavenumber so that the delta function must be replaced by an interaction volume I.’ 
which may be taken as the volume of intersection of the two beams. Choosing 
no = lo i4  cmV3, T = 50eV, Bo = 7.3 kG, v/R = and using ruby lasers with 
wavelength 7 x cm and fields of 108V cm-’ one has G ~ ~ ~ ~ ( o ~ ~ ) / o ~ ~ ( w ~ ~ )  1: 10’’ 
for an interaction volume cm3. In practice of course this factor will be greatly 
reduced as Bloembergen and Shen have pointed out in commenting on the KRR result. 

The details of the spectrum for stimulated scattering are of greater interest, in par- 
ticular the relative intensities of the radiation scattered into consecutive harmonics. 
From (28) it follows that 

[ d r ~ ( ~ R ) / d C ] , , ~ ,  
[da(rR)/dC]stim 

whereas for the thermal spectrum 

ib -- [do(xR)/dC], ,  - 
[da(rR)/dC],, 2(r + 1)’ 

Thus, as the harmonic number r increases the scattering due to the driven Bernstein 
mode decays as ( i / r ) ’ ,  that is, more rapidly than in the thermal spectrum. A similar 
comparison may be made between the upper hybrid resonance and the rth Bernstein 
mode for the two spectra. Platzman et a1 (1968) considered some details of the spectrum 
of scattered light from a magnetized plasma in the thermal case in the small i regime. 
For kiD < 1 and k I Bo the thermal spectrum consists of a series of peaks corresponding 
to the upper hybrid resonance and the Bernstein modes located near the cyclotron 
harmonics rR(r 3 2). The relative intensities of light scattered by the rth order Bernstein 
mode to that scattered by the upper hybrid is ir. Comparing these features in the stimu- 
lated spectrum gives 

which is independent of 2 for r = 2. For the plasma considered earlier the condition 
w-rS1 >> rQv:/c2 implies that r > 2 in any case for a nonrelativistic treatment to be 
valid. In this case 

[do(2Q)/dxlstim - I 
- 2  

[do(w~d/dCI stim 

in sharp contrast with the behaviour of the thermal spectrum. In that case Platzman 
et al concluded that in the long wavelength limit it will be difficult to observe scattering 
from the Bernstein modes and suggested choosing the magnetic field so that one of 
these modes becomes degenerate with the upper hybrid to allow a transfer of intensity 
into the degenerate mode. This would not be straightforward in practice since it requires 
arranging the magnetic field so that ( r 2  - 1)R2 = CO;, r >, 2 that is, measuring the plasma 
density beforehand. 

The attraction of a scattering experiment using Bernstein modes enhanced by applied 
electric fields over its counterpart in an isotropic plasma lies principally in the fact that 
magnetic field uniformity is demanded rather than plasma homogeneity. This condition 
may be more easily realized experimentally. Moreover, tuning the system by varying 
the magnetic field is certainly feasible while in the isotropic plasma experiment it would 
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hardly be possible since the plasma density would have to be varied to makeo - o2 wp . 
The possibility of adapting the mixing experiments for diagnostic purposes is worth 
examining. This demands ofcourse a laser system that may be readily tuned to a cyclotron 
harmonic resonance to provide a measurement of magnetic fields in hot dense plasmas. 
In this connection it is worth noting that Nodwell et a1 (1970) have constructed such a 
laser system operating, however, at low powers. 

We conclude that warm plasma theory predicts an enhancement in the intensity of 
light scattered by driven Bernstein modes in a magnetized plasma over the thermal 
spectrum. Moreover, there are differences in the scattered light spectra between stimu- 
lated and thermal oscillations. In particular the intensity scattered by the mode at 252 
is comparable with that due to the upper hybrid frequency in contrast with the thermal 
spectrum. This may be significant for a stimulated scattering experiment in that it should 
be easier to arrange w 2  -a1 = 2 0  than to tune to the upper hybrid frequency which is 
a function of plasma density as well as of magnetic field. 

Finally, the discussion in this paper has been restricted to electrostatic waves with 
k I Bo while in an actual experiment one would collect scattered light from a cone of k 
vectors about k,. However, it is worth noting that Carolan and Evans (1971) have 
recently shown that the composite scattered light spectrum is strongly influenced by the 
contribution from k = k,. 
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Appendix 

Observing that 

a p t  1 , cos(~-R~z)---sin(~-Rz)- 
au, 01 

a p  I 
sin(4 - Or)- + - cos(4 - 

av, V I  
and defining 

ie a f o  
2mr(k',w') n , p = - m  1 

Gl = xmx exp{ - i(n - p)a'} - J,(a')J,(a') 

U G, = 2iAG, 
U 1  

. a G ,  
av ,  

''I ~'- . i~ 

G2 = -1- 

1 
A .=-  exP{i0'-P)(4-Q4) 

where 

k',v I a = -  
R 

k' = (k', cos a', k', sin a', 0) 
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it follows that 

~- - G2{Ap,n+ '(iEy'(k', w')+Ey'(k',  0')) y ( 1 )  

l?CL 

+ Ap,n-  l(iEyt(k', 0') - Ey'(k', 0'))) + G3Ap,nE;Xt(k', 01') 

~ = Gl{(n-p+ l)Ap,n+l(iEy'(k', w')+E;"'(k', W'))+(n-p- 1 )  
2f (1' 

24' 
x (iEy'(k', 0') - E;x'(k', U') ) )  + G,(n -p)A,,,E;"'(k'. U') ,  

The term df ( ' ) / ? E  is not displayed since its integral over velocity space is zero. Further. 
defining 

T 

B = exp(Fiasin(4-U)) J,(a)exp{-ir(~-$)) 
r = - x  

exp{i(n - p  + 04) 
Q' = ( c o r -  j n ) (w - Iz - p + r + to) 

and 

E?' = iEy' + E:xt 

the 7 integration may be carried out, giving, after some lengthy algebra 

[G2{El(k', 0') 
B 

2 4  - k',  0 - w')  
H = s s dw' dk' 

x (Q;+ 'E1(k -k' ,  o - w') - Q;' 'ET(k - k'. w - 0')) 

- ET(k', w')(Q;- 'E,(k - k', LO - w') - Q'Y2'ET(k - k',  o - ~>'))l 

1 
+-G,{(n-p+ l)E1(k'.w') 
Cl 

x (Q;' 'E , (k  -k ' ,  w - LO') + Q;+ 'ET(k - k', w - (0 ' ) )  

-(n-p- l)ET(k', ~ ' ) ( Q ; - l E ~ ( k - k ' ,  W-0')  

+Q"=,'ET(k-k'. 0-w'))) ]  

Ik -k'l +-[ 0--0' -iGl[(eiGE -k ' ,  w - U ' )  

+e- ' ;ET(k-k ' ,  w - u ' ) )  

x {(n-p+ l)E1(k', o')Q;+'-(n-p- I)E*,(k', w')Q'!!-ll)] 

+E,(&, o')E,(k - k',  w - w' )  

with k - k '  = Ik-k'l(cos 2, sin 2, 0). The term ET denotes the complex conjugate of E ,  
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and we have dropped the superscript label 'ext'. In all subsequent working E ,  denotes 
E'"' 

1 '  - 
We now substitute this expression for H, to determine d 2 ) ( k , w )  and find, after 

integrating over U l l  and 4 

dw' d k  
W )  = - 

E ( k ; ,  ~ ' ) ~ ( k l -  k;, w -w')<(kl, 0) 
uI dv, j 5 2mZ 

E,(k', w')E,(k - k', w - w' )  
w' -  nR 

-Js-n+p+l(a)exp{ ('4.2) 

where 

Fnp = -J,(a')J,(a'). dfo 
do1 

The triple sum in (A.2) can then be reduced to a double sum using the addition theorem 
for Bessel functions 

m 

1 exp{ip(a'-a)}J,(a')J,+,(a) = exp(iq)J,(Z) 
p =  - w 

where si == ( / k - k ' l u , / f l )  and y = 2n-E+a = n+a-c as shown in figure 1. Then 
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equation (A.2) becomes 

n"'(k, w)  = eJ c, dc, 1 2m2 
d o '  dk 

€(k*, ")€(IC1 - k;,  w - " ) € ( I C , ,  w )  

x C 1 exp{i(sa-na')+i(s-n)8}--- J S ( 4  

n s  w-SR 

x 1 { E1W, w')E,(k - k',  w -0') J s - n - 2 ( L j ) e - z ' f i ( ~ ~ ~  - ---Pn] n + l  

w ' - n + l R  l'l 

la' 1 a'pn + 2{ Re(E,(k - k', o - U') e ), 
1'L 

exp(-i(ii+P)}J,-,-,(Z) 

-exp{i(ii+fl)}Js-n+,(ii) 

+ 2{Re(E,(k - k', w - w')  e")] P,, - jp -Js -n -  - l(5) 
(0) - n + 1R 

U ' - n -  1R 
- (n - l)ET(k', 0') 

[e'"'J,-,,(Z) +exp( - i(a'+2P)}Js-,-,(Z)] 

[exp{i(ci' + 2p)}Js - n  + z(Z) + e-'"'J,-,,(Z)] 

where 

/? = 7 c - - .  
dfb 
do, 

Pn = -J,(u') 

The reduction of the triple sum in (24) to the double sum in (25) makes the numerical 
evaluation of d2)(k ,  w )  easier. For the situation in which we are interested. a further 
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Figure 1. Geometry of the wavevectors 

simplification is possible ; noting that the frequencies U’, (0 - -0’ are in the optical range 
while R is typically 10” Hz we may replace terms like w ’ -  n + 1R by o‘ and the dielectric 
functions ~ ( k l ,  o’), e(kl  - k l ,  w -0‘) by unity. It then becomes possible to contract the 
double summation in (A.3) to a single sum over s, with the use of the identity 

exp( -in(7c+ci’--()}JS-,(ii)Jn(u‘) = e’”J,(b) 
n =  -r: 

where 

a’ sin(u’ - 5 )  
G + a’ cos(a’ - 5) t an8  = 

and 

b = (2 + u‘2 - 2u’Z cos(u’ - ())”2. 

This then gives (22). 
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